Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (194)2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37154568

RESUMO

The ocular micro-dissection of the rodent eye involves the segmentation of the enucleated eyeball with the attached nictitating membrane, or third eyelid, to obtain the anterior and posterior eyecups. With this technique, the sub-parts of the eye, including the corneal tissue, neural tissue, retinal pigment epithelial (RPE) tissue, and lens, can be obtained for wholemounts, cryo-sectioning, and/or single-cell suspensions of a specific ocular tissue. The presence of the third eyelid presents unique and significant advantages, as it benefits the maintenance of the orientation of the eye, which is important for understanding eye physiology following any localized intervention or in studies involving ocular analysis relating to the eye's spatial topography. In this method, we enucleated the eyeball at the socket along with the third eyelid by carefully and slowly cutting through the extraocular muscles and severing the optic nerve. The eyeball was pierced through the corneal limbus using a microblade. The incision was used as the point of entry, allowing for cutting along the corneal-scleral junction by inserting micro-scissors through the incision point. Small and continuous cuts along the circumference were made until the cups separated. These could be further dissected by gently peeling the translucent layer of the neural retina using Colibri suturing forceps to obtain the neural retina and RPE layers. Further, three/four equidistant cuts were made from the periphery perpendicularly to the optic center until the optic nerve was reached. This opened the hemispherical cups into a floret shape so that they fell flat and could be easily mounted. This technique has been used in our lab for corneal wholemounts and retinal sections. The presence of the third eyelid delineates the nasal-temporal orientation, which allows for the study of various cell therapy interventions post-transplantation and, thus, the targeted physiological validation vital for visualization and accurate representation in such studies.


Assuntos
Cristalino , Microdissecção , Animais , Olho , Retina/cirurgia , Epitélio Pigmentado da Retina , Córnea/cirurgia
2.
Front Immunol ; 14: 1104711, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122749

RESUMO

Introduction: The evolving tumor secretes various immunosuppressive factors that reprogram the tumor microenvironment (TME) to become immunologically cold. Consequently, various immunosuppressive cells like Tregs are recruited into the TME which in turn subverts the anti-tumor response of dendritic cells and T cells.Tumor immunotherapy is a popular means to rejuvenate the immunologically cold TME into hot. Mycobacterium indicus pranii (MIP) has shown strong immunomodulatory activity in different animal and human tumor models and has been approved for treatment of lung cancer (NSCLC) patients as an adjunct therapy. Previously, MIP has shown TLR2/9 mediated activation of antigen presenting cells/Th1 cells and their enhanced infiltration in mouse melanoma but the underlying mechanism by which it is modulating these immune cells is not yet known. Results: This study reports for the first time that MIP immunotherapy involves type 1 interferon (IFN) signaling as one of the major signaling pathways to mediate the antitumor responses. Further, it was observed that MIP therapy significantly influenced frequency and activation of different subsets of T cells like regulatory T cells (Tregs) and CD8+ T cells in the TME. It reduces the migration of Tregs into the TME by suppressing the expression of CCL22, a Treg recruiting chemokine on DCs and this process is dependent on type 1 IFN. Simultaneously, in a type 1 IFN dependent pathway, it enhances the activation and effector function of the immunosuppressive tumor resident DCs which in turn effectively induce the proliferation and effector function of the CD8+ T cells. Conclusion: This study also provides evidence that MIP induced pro-inflammatory responses including induction of effector function of conventional dendritic cells and CD8+ T cells along with reduction of intratumoral Treg frequency are essentially mediated in a type 1 IFN-dependent pathway.


Assuntos
Mycobacterium , Neoplasias , Animais , Camundongos , Humanos , Linfócitos T CD8-Positivos , Células Dendríticas , Interferons , Microambiente Tumoral
3.
Biomed Pharmacother ; 160: 114307, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36739765

RESUMO

Cancer associated morbidity is mostly attributed to the dissemination of tumor cells from their primary niche into the circulation known as "metastasis". Mycobacterium indicus pranii (MIP) an approved immunotherapeutic agent against lung cancer (NSCLC) has shown potent anti-tumor activity in prior studies. While evaluating anti-tumor activity of MIP in mouse model, MIP treated animals typically exhibited less metastatic lesions in their pulmonary compartment. To study the role of MIP in metastasis closely, B16F10 melanoma cells were implanted subcutaneously in the mice, and the dissemination of tumor cells from the solid tumor was evaluated over a period of time. When B16F10 melanoma cells were treated with MIP in vitro, downregulation of epithelial mesenchymal transition markers was observed in these cells, which in turn suppressed the invasion, migration and adhesion of tumor cells. Notably, MIP therapy was found to be effectively reducing the metastatic burden in murine model of melanoma. Molecular characterization of MIP treated tumor cells substantiated that MIP upregulates the PPARγ expression within the tumor cells, which attenuates the NFκB/p65 levels within the nucleus, resulting in the suppression of Mmp9 expression in tumor cells. Besides that, MIP also downregulated the surface expression of chemokine receptor CXCR4 in murine melanoma cells, where chromatin immunoprecipitation confirmed the impeded recruitment of p50 and c-Rel factors to the Cxcr4 promoter, resulting in its downregulation transcriptionally. Taken together, MIP suppressed the dissemination of tumor cells in vivo, by regulating the expression of MMP9 and CXCR4 on these cells.


Assuntos
Melanoma , Mycobacterium , Animais , Camundongos , Metaloproteinase 9 da Matriz , Modelos Animais de Doenças , Melanoma/terapia
4.
Int Immunopharmacol ; 114: 109463, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36462337

RESUMO

Targeting immunotherapeutics inside the tumor microenvironment (TME) with intact biological activity remains a pressing issue. Mycobacterium indicus pranii (MIP), an approved adjuvant therapy for leprosy has exhibited promising results in clinical trials of lung (NSCLC) and bladder cancer. Whole MIP as well as its cell wall fraction have shown tumor growth suppression and enhanced survival in mice model of melanoma, when administered peritumorally. Clinically, peritumoral delivery remains a procedural limitation. In this study, a tumor targeted delivery system was designed, where chitosan nanoparticles loaded with MIP adjuvants, when administered intravenously showed preferential accumulation within the TME, exploiting the principle of enhanced permeability and retention effect. Bio-distribution studies revealed their highest concentration inside the tumor after 6 h of administration. Interestingly, MIP adjuvant nano-formulations significantly reduced the tumor volume in the treated groups and increased the frequency of activated immune cells inside the TME. For chemoimmunotherapeutics studies, MIP nano-formulation was combined with standard dosage regimen of Paclitaxel. Combined therapy exhibited a further reduction in tumor volume relative to either of the MIP nano formulations. From this study a three-pronged strategy emerged as the underlying mechanism; chitosan and Paclitaxel have shown direct role in tumor cell death and the MIP nano-formulation activates the tumor residing immune cells which ultimately leads to the reduced tumor growth.


Assuntos
Quitosana , Nanopartículas , Animais , Camundongos , Microambiente Tumoral , Adjuvantes Imunológicos/uso terapêutico , Paclitaxel , Linhagem Celular Tumoral
5.
Front Immunol ; 12: 775177, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899731

RESUMO

TB-IRIS is an abnormal inflammatory response in a subset of HIV-TB co-infected patients shortly after initiation of anti-retroviral therapy (ART). Therapy in these patients could have greatly improved the life expectancy as ART reconstitutes the function and number of CD4+ T cells and many patients see improvement in symptoms but paradoxically up to 54% of co-infected patients develop TB-IRIS. Different studies have indicated that both innate and adaptive immunity are involved in the pathology of IRIS but the role of macrophages in abnormal activation of CD4+ T cells is poorly understood. Since macrophages are one of the major antigen-presenting cells and are infected by M.tb at a high frequency, they are very much likely to be involved in the development of TB-IRIS. In this study, we have developed a mouse model of experimental IRIS, in which M.tb-infected T-cell knockout mice undergo a fatal inflammatory disease after CD4+ T cell reconstitution. Lung macrophages and blood monocytes from M.tb-infected TCRß-/- mice showed upregulated expression of cell surface activation markers and also showed higher mRNA expression of inflammation-associated chemokines and matrix metalloproteases responsible for tissue damage. Furthermore, cytokine and TLR signaling feedback mechanism to control excessive inflammation was also found to be dysregulated in these macrophages under lymphopenic conditions. Previous studies have shown that hyperactive CD4+ T cells are responsible for disease induction and our study shows that somehow macrophages are in a higher activated state when infected with M.tb in an immune-deficient condition, which results in excessive activation of the adoptively transferred CD4+ T cells. Understanding of the mechanisms underlying the pathophysiology of TB-IRIS would facilitate identification of prospective biomarkers for disease development in HIV-TB co-infected patients before starting antiretroviral therapy.


Assuntos
Coinfecção , Infecções por HIV/complicações , Infecções por HIV/virologia , Síndrome Inflamatória da Reconstituição Imune/etiologia , Macrófagos/imunologia , Tuberculose/complicações , Tuberculose/microbiologia , Transferência Adotiva , Animais , Biomarcadores , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Síndrome Inflamatória da Reconstituição Imune/diagnóstico , Síndrome Inflamatória da Reconstituição Imune/metabolismo , Síndrome Inflamatória da Reconstituição Imune/terapia , Mediadores da Inflamação/metabolismo , Ativação Linfocitária , Lisossomos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Knockout , Óxido Nítrico/metabolismo , Fagossomos , Receptores de Antígenos de Linfócitos T alfa-beta/deficiência , Tuberculose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...